Regularization by architecture: A deep prior approach for inverse problems

S. Dittmer, T.Kluth, P.Maaß, D. Otero Baguer

Center for Industrial Mathematics (ZeTeM) University of Bremen

> 24.01.2019 Stockholm, Sweden

1/47

Paper:

https://export.arxiv.org/abs/1812.03889

Code:

https://github.com/otero-baguer/analytic-deep-prior

Outline

- 1 Introduction
- 2 Deep Image Prior (DIP)
- 3 Analytic Deep Prior
- 4 Academic Example
- 5 Magnetic Particle Imaging (MPI)

Section 1

Introduction

4 / 47

Consider an operator $A: X \to Y$ between Hilbert spaces X and Y.

Inverse Problem (General task)

Given measured noisy data

$$y^{\delta} = A x^{\dagger} + \tau, \tag{1}$$

obtain an approximation \hat{x} for x^{\dagger} , where τ , with $\|\tau\| \leq \delta$, describes the noise in the measurement.

Consider an operator $A: X \to Y$ between Hilbert spaces X and Y.

Inverse Problem (General task)

Given measured noisy data

$$y^{\delta} = A x^{\dagger} + \tau, \qquad (1)$$

obtain an approximation \hat{x} for x^{\dagger} , where τ , with $\|\tau\| \leq \delta$, describes the noise in the measurement.

Classical approach: Variational regularization

$$\hat{x}_{\alpha} = \arg\min\frac{1}{2} \|Ax - y^{\delta}\|^2 + \alpha \mathcal{R}(x)$$
(2)

Examples of hand-crafted priors:

$$||x||^2$$

$$||x||_1$$

$$\blacksquare TV(x)$$

Remark: α selection

Classical approach: Variational regularization

$$\hat{x}_{\alpha} = \arg\min\frac{1}{2} \|Ax - y^{\delta}\|^2 + \alpha \mathcal{R}(x)$$
(2)

Examples of hand-crafted priors:

$$||x||^2$$

$$||x||_1$$

Remark: α selection

Classical approach: Variational regularization

$$\hat{x}_{\alpha} = \arg\min\frac{1}{2} \|Ax - y^{\delta}\|^2 + \alpha \mathcal{R}(x)$$
(2)

Examples of hand-crafted priors:

$$||x||^2$$

$$||x||_1$$

Remark: α selection

Deep learning and inverse problems

- Primal-Dual reconstructions
- Learned gradient descent
- Learned post-processing: $\mathcal{F}_{\theta} \circ A^{\dagger}$
- Learned regularizers: \mathcal{R}_{θ}
- Learned priors and generative networks (GAN, VAE)

Drawbacks:

- Need a lot of data. How to get the ground-truths?
- Real data noise might be different from the one present on the training samples.

Deep learning and inverse problems

- Primal-Dual reconstructions
- Learned gradient descent
- Learned post-processing: $\mathcal{F}_{\theta} \circ A^{\dagger}$
- Learned regularizers: \mathcal{R}_{θ}
- Learned priors and generative networks (GAN, VAE)

Drawbacks:

- Need a lot of data. How to get the ground-truths?
- Real data noise might be different from the one present on the training samples.

Is it possible to solve inverse problems using deep learning without any training data?

Generative Networks

Let's consider a generative Neural Network $\varphi_W(z)$ previously trained.

- W is fixed after the training phase.
- We can obtain images by sampling **z**.

For solving inverse problems:

$$\hat{z} = \arg\min_{z} \|\varphi_{W}(z) - y^{\delta}\|$$

 $\hat{x} = \varphi_W(\hat{z})$

Can we obtain images by sampling **W** for a fixed *z* using the same network architecture (without training)?

Generative Networks

Let's consider a generative Neural Network $\varphi_W(z)$ previously trained.

- W is fixed after the training phase.
- We can obtain images by sampling **z**.

For solving inverse problems:

$$\hat{z} = \arg \min_{z} \|\varphi_{W}(z) - y^{\delta}\|$$
$$\hat{x} = \varphi_{W}(\hat{z})$$

Can we obtain images by sampling W for a fixed z using the same network architecture (without training)?

Generative Networks

Let's consider a generative Neural Network $\varphi_W(z)$ previously trained.

- W is fixed after the training phase.
- We can obtain images by sampling **z**.

For solving inverse problems:

$$\hat{z} = \arg \min_{z} \|\varphi_{W}(z) - y^{\delta}\|$$
$$\hat{x} = \varphi_{W}(\hat{z})$$

Can we obtain images by sampling \mathbf{W} for a fixed z using the same network architecture (without training)?

Section 2

Deep Image Prior (DIP)

10 / 47

Basic Idea¹

Given measured noisy data

$$y^{\delta} = Ax^{\dagger} + \tau, \tag{3}$$

train a neural network $\varphi_W(z)$ with parameters W by minimizing the loss function

$$\|A\varphi_W(z) - y^{\delta}\|^2 \tag{4}$$

with respect to W, for a single fixed input z and output y^{δ} .

Then compute $\hat{x} = \varphi_W(z)$

¹Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. "Deep Image Prior". In: *CoRR* (2017). arXiv: 1711.10925.

Basic Idea¹

Given measured noisy data

$$y^{\delta} = Ax^{\dagger} + \tau, \tag{3}$$

train a neural network $\varphi_W(z)$ with parameters W by minimizing the loss function

$$\|A\varphi_W(z) - y^{\delta}\|^2 \tag{4}$$

with respect to W, for a single fixed input z and output y^{δ} .

Then compute $\hat{x} = \varphi_W(z)$

¹Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. "Deep Image Prior". In: CoRR (2017). arXiv: 1711.10925.

Basic Idea¹

Given measured noisy data

$$y^{\delta} = Ax^{\dagger} + \tau, \tag{3}$$

train a neural network $\varphi_W(z)$ with parameters W by minimizing the loss function

$$\|A\varphi_W(z) - y^{\delta}\|^2 \tag{4}$$

with respect to W, for a single fixed input z and output y^{δ} .

Then compute $\hat{x} = \varphi_W(z)$

¹Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. "Deep Image Prior". In: *CoRR* (2017). arXiv: 1711.10925.

The network $\varphi_W(z)$ has a standard U-Net-like architecture.

- It has enough expressive power to reproduce some noise.
- Optimization method with early stopping plays an important role.
- Solving each instance requires training the network.
- It takes a lot of time.

- The network $\varphi_W(z)$ has a standard U-Net-like architecture.
- It has enough expressive power to reproduce some noise.
- Optimization method with early stopping plays an important role.
- Solving each instance requires training the network.
- It takes a lot of time.

- The network $\varphi_W(z)$ has a standard U-Net-like architecture.
- It has enough expressive power to reproduce some noise.
- Optimization method with early stopping plays an important role.
- Solving each instance requires training the network.
- It takes a lot of time.

- The network $\varphi_W(z)$ has a standard U-Net-like architecture.
- It has enough expressive power to reproduce some noise.
- Optimization method with early stopping plays an important role.
- Solving each instance requires training the network.
- It takes a lot of time.

- The network $\varphi_W(z)$ has a standard U-Net-like architecture.
- It has enough expressive power to reproduce some noise.
- Optimization method with early stopping plays an important role.
- Solving each instance requires training the network.
- It takes a lot of time.

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

(b) Iteration 1000

Example

(a) Data (y^{δ})

(b) Iteration 1050

Example

(a) Data (y^{δ})

(b) Iteration 1100

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

(b) Iteration 1250

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

(b) Iteration 1350

Example

(a) Data (y^{δ})

(b) Iteration 1400

Example

(a) Data (y^{δ})

(b) Iteration 1450

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

(b) Iteration 1600

Example

(a) Data (y^{δ})

(b) Iteration 1650

Example

(a) Data (y^{δ})

(b) Iteration 1700

Example

(a) Data (y^{δ})

Example

(a) Data (y^{δ})

(b) Iteration 1800

Example

(a) Data (y^{δ})

(b) Iteration 1850

Example

(a) Data (y^{δ})

(b) Iteration 1900

DIP vs Global-Local GAN²

(a) Iteration 1900

(b) Global-Local GAN

²Satoshi lizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. "Globally and Locally Consistent Image Completion". In: ACM Transactions on Graphics (Proc. of SIGGRAPH 2017) 36.4 (2017).

Analytic Deep Prior

Section 3

Analytic Deep Prior

Can the DIP approach be used to solve ill-posed inverse problems?

Consider a trivial network $\varphi_W(z) = W$, and that W corresponds to elements in X.

 \implies The approximate solution to the inverse problem is given by $\hat{x} = \varphi_W(z) = W.$

$$\alpha \sim \frac{1}{n} \tag{5}$$

Can the DIP approach be used to solve ill-posed inverse problems?

Consider a trivial network $\varphi_W(z) = W$, and that W corresponds to elements in X.

 \implies The approximate solution to the inverse problem is given by $\hat{x} = \varphi_W(z) = W$.

$$\alpha \sim \frac{1}{n} \tag{5}$$

Can the DIP approach be used to solve ill-posed inverse problems?

Consider a trivial network $\varphi_W(z) = W$, and that W corresponds to elements in X.

 \implies The approximate solution to the inverse problem is given by $\hat{x} = \varphi_W(z) = W.$

$$\alpha \sim \frac{1}{n} \tag{5}$$

Can the DIP approach be used to solve ill-posed inverse problems?

Consider a trivial network $\varphi_W(z) = W$, and that W corresponds to elements in X.

 \implies The approximate solution to the inverse problem is given by $\hat{x} = \varphi_W(z) = W.$

$$\alpha \sim \frac{1}{n} \tag{5}$$

Convex optimization reminder

In the variational approach we usually minimize:

$$J(x) = \frac{1}{2} \|Ax - y^{\delta}\|^2 + \alpha \mathcal{R}(x).$$
(6)

where $\ensuremath{\mathcal{R}}$ is convex but not differentiable.

The necessary first order condition for a minimizer is given by

$$0 \in A^*(Ax - y^{\delta}) + \alpha \partial \mathcal{R}(x) \tag{7}$$

$$x \in x + \lambda A^*(Ax - y^{\delta}) + \lambda \alpha \partial \mathcal{R}(x)$$
 (8)

$$x - \lambda A^* (Ax - y^{\delta}) \in x + \lambda \alpha \partial \mathcal{R}(x).$$
(9)

which is equivalent to

$$\Pr_{\lambda \alpha \mathcal{R}} \left(x - \lambda A^* (A x - y^{\delta}) \right) = x.$$
(10)

Convex optimization reminder

In the variational approach we usually minimize:

$$J(x) = \frac{1}{2} \|Ax - y^{\delta}\|^2 + \alpha \mathcal{R}(x).$$
(6)

where $\ensuremath{\mathcal{R}}$ is convex but not differentiable.

The necessary first order condition for a minimizer is given by

$$0 \in A^*(Ax - y^{\delta}) + \alpha \partial \mathcal{R}(x)$$
(7)

$$x \in x + \lambda A^*(Ax - y^{\delta}) + \lambda \alpha \partial \mathcal{R}(x)$$
 (8)

$$x - \lambda A^*(Ax - y^{\delta}) \in x + \lambda \alpha \partial \mathcal{R}(x).$$
 (9)

which is equivalent to

$$\Pr_{\lambda \alpha \mathcal{R}} \left(x - \lambda A^* (A x - y^{\delta}) \right) = x.$$
(10)
In the variational approach we usually minimize:

$$J(x) = \frac{1}{2} \|Ax - y^{\delta}\|^2 + \alpha \mathcal{R}(x).$$
(6)

where \mathcal{R} is convex but not differentiable.

The necessary first order condition for a minimizer is given by

$$0 \in A^*(Ax - y^{\delta}) + \alpha \partial \mathcal{R}(x)$$
(7)

$$x \in x + \lambda A^*(Ax - y^{\delta}) + \lambda \alpha \partial \mathcal{R}(x)$$
 (8)

$$x - \lambda A^*(Ax - y^{\delta}) \in x + \lambda \alpha \partial \mathcal{R}(x).$$
 (9)

which is equivalent to

$$\Pr_{\lambda \alpha \mathcal{R}} \left(x - \lambda A^* (A x - y^{\delta}) \right) = x.$$
 (10)

Turning the fixed point condition into an iteration scheme yields

$$x^{k+1} = \Pr_{\lambda lpha \mathcal{R}} \left(x^k - \lambda A^* (A x^k - y^{\delta}) \right)$$
 (11)

$$= \Pr_{\lambda \alpha \mathcal{R}} \left((I - \lambda A^* A) x^k + \lambda A^* y^{\delta} \right) .$$
 (12)

Rewriting $W = I - \lambda A^* A$, $b = \lambda A^*$ and $\phi(\cdot) = \text{Prox}_{\lambda \alpha \mathcal{R}}(\cdot)$ yields

$$x^{k+1} = \phi\left(Wx^k + b\right) \tag{13}$$

Example

Consider $\mathcal{R}(x) = I_{+}(x)$ (indicator function for non-negative numbers) $\Pr_{\lambda \alpha \mathcal{R}}(x) = \mathbf{ReLu}(x)$ (14)

The iteration scheme $x^{k+1} = \phi (Wx^k + b)$ is quite similar to a Neural Network.

Example

Consider $\mathcal{R}(x) = I_{+}(x)$ (indicator function for non-negative numbers) $\Pr_{\lambda \alpha \mathcal{R}}(x) = \mathbf{ReLu}(x)$ (14)

The iteration scheme $x^{k+1} = \phi (Wx^k + b)$ is quite similar to a Neural Network.

Now we consider the particular architecture of a fully connected feed-forward iterative network with L identical layers

$$\varphi_W(z) = x^L, \tag{15}$$

where

$$x^{k+1} = \phi\left(Wx^k + b\right) \tag{16}$$

for k = 0, ..., L - 1 and $x^0 = z$.

- ϕ is the proximal mapping of a regularizing functional $\lambda \alpha R$
- W is such that $I W = \lambda B^* B$ for some B

•
$$b = \lambda B^* y^{\delta}$$

In this setting, $\varphi_W(z)$ is identical to the *L*-th iterate of the PG method for minimizing

$$J_B(x) = \frac{1}{2} \|Bx - y^{\delta}\|^2 + \alpha \mathcal{R}(x), \qquad (17)$$

If $\varphi_W(z) = x(B) = \arg \min J_B(x)$: Updating W, i.e. B, changes the discrepancy term in the Tikhonov functional.

Definition

We call this setting an **analytic deep prior** if B is trained from a single data point y^{δ} by gradient descent applied to

$$\min_{B} \|Ax(B) - y^{\delta}\|^2.$$
(18)

In this setting, $\varphi_W(z)$ is identical to the *L*-th iterate of the PG method for minimizing

$$J_B(x) = \frac{1}{2} \|Bx - y^{\delta}\|^2 + \alpha \mathcal{R}(x),$$
 (17)

If $\varphi_W(z) = x(B) = \arg \min J_B(x)$: Updating W, i.e. B, changes the discrepancy term in the Tikhonov functional.

Definition

We call this setting an **analytic deep prior** if B is trained from a single data point y^{δ} by gradient descent applied to

$$\min_{B} \|Ax(B) - y^{\delta}\|^2.$$
(18)

In this setting, $\varphi_W(z)$ is identical to the *L*-th iterate of the PG method for minimizing

$$J_B(x) = \frac{1}{2} \|Bx - y^{\delta}\|^2 + \alpha \mathcal{R}(x),$$
 (17)

If $\varphi_W(z) = x(B) = \arg \min J_B(x)$: Updating W, i.e. B, changes the discrepancy term in the Tikhonov functional.

Definition

We call this setting an **analytic deep prior** if B is trained from a single data point y^δ by gradient descent applied to

$$\min_{B} \|Ax(B) - y^{\delta}\|^2.$$
(18)

Training/Optimization

The training of B for given data y^{δ} is achieved by a gradient descent method applied to

$$F(B) = \frac{1}{2} ||Ax(B) - y^{\delta}||^2$$
(19)
s.t. $x(B) = \underset{x}{\operatorname{arg\,min}} J_B(x).$ (20)

The stationary points are characterized by $\partial F(B) = 0$ and gradient descent iterations with stepsize η are given by

$$B^{\ell+1} = B^{\ell} - \eta \partial F(B^{\ell}).$$
(21)

Hence we need to compute the derivative of F with respect to B.

Training/Optimization

The training of B for given data y^{δ} is achieved by a gradient descent method applied to

$$F(B) = \frac{1}{2} ||Ax(B) - y^{\delta}||^2$$
(19)
s.t. $x(B) = \underset{x}{\arg \min} J_B(x).$ (20)

The stationary points are characterized by $\partial F(B) = 0$ and gradient descent iterations with stepsize η are given by

$$B^{\ell+1} = B^{\ell} - \eta \partial F(B^{\ell}).$$
(21)

Hence we need to compute the derivative of F with respect to B.

Training/Optimization

The training of B for given data y^{δ} is achieved by a gradient descent method applied to

$$F(B) = \frac{1}{2} ||Ax(B) - y^{\delta}||^2$$
(19)
s.t. $x(B) = \underset{x}{\arg \min} J_B(x).$ (20)

The stationary points are characterized by $\partial F(B) = 0$ and gradient descent iterations with stepsize η are given by

$$B^{\ell+1} = B^{\ell} - \eta \partial F(B^{\ell}).$$
(21)

Hence we need to compute the derivative of F with respect to B.

24 / 47

Example

Consider $\mathcal{R}(x) = \frac{1}{2} ||x||^2$.

In this case $x(B) = \arg \min J_B(x) = (B^*B + \alpha I)^{-1}B^*y^{\delta}$.

For illustration we consider the rather unrealistic case $x^{\dagger} = u$, where u is a singular function of $A (Au = \sigma v)$

$$y^{\delta} = Au + \delta v = (\sigma + \delta)v$$
(22)

A lengthy computation exploiting $B^0 = A$ and $\beta_0 = \sigma$ shows that

$$B^{\ell+1} = B^\ell - c_\ell v u^* \tag{23}$$

Goal: Find optimal B, to minimize the loss function

$$\frac{1}{2} \|Ax(B) - y^{\delta}\|^2$$
 (24)

Equivalent to train the network $\varphi_W(z)$ for the single data point (z, y^{δ}) updating B by back-propagation.

How many layers should the network have in order to ensure that $\varphi_W(z) = x(B) = \arg \min J_B$?

Thousands of layers! (slow convergence of the PG method).

Goal: Find optimal B, to minimize the loss function

$$\frac{1}{2} \|Ax(B) - y^{\delta}\|^2$$
 (24)

Equivalent to train the network $\varphi_W(z)$ for the single data point (z, y^{δ}) updating B by back-propagation.

How many layers should the network have in order to ensure that $\varphi_W(z) = x(B) = \arg \min J_B$?

Thousands of layers! (slow convergence of the PG method).

Goal: Find optimal B, to minimize the loss function

$$\frac{1}{2} \|Ax(B) - y^{\delta}\|^2$$
 (24)

Equivalent to train the network $\varphi_W(z)$ for the single data point (z, y^{δ}) updating B by back-propagation.

How many layers should the network have in order to ensure that $\varphi_W(z) = x(B) = \arg \min J_B$?

Thousands of layers! (slow convergence of the PG method).

Goal: Find optimal B, to minimize the loss function

$$\frac{1}{2} \|Ax(B) - y^{\delta}\|^2$$
 (24)

Equivalent to train the network $\varphi_W(z)$ for the single data point (z, y^{δ}) updating B by back-propagation.

How many layers should the network have in order to ensure that $\varphi_W(z) = x(B) = \arg \min J_B$?

Thousands of layers! (slow convergence of the PG method).

Goal: Find optimal B, to minimize the loss function

$$\frac{1}{2} \|Ax(B) - y^{\delta}\|^2$$
 (24)

Equivalent to train the network $\varphi_W(z)$ for the single data point (z, y^{δ}) updating B by back-propagation.

How many layers should the network have in order to ensure that $\varphi_W(z) = x(B) = \arg \min J_B$?

Thousands of layers! (slow convergence of the PG method).

Solution:

- Consider only a reduced network with a small number,
 - L = 10, of layers
- Set the input to be the network's output after the previous iteration.

Figure: The implicit network with (k + 1)L layers. Here $\varphi_{W_k}^L$ refers to a block of L identical fully connected layers with weights $W_k = I - \lambda B_k^T B_k$ and $b_k = \lambda B_k^T y^{\delta}$.

Solution:

- Consider only a reduced network with a small number,
 - L = 10, of layers
- Set the input to be the network's output after the previous iteration.

$$z \to \fbox{\varphi_{W_0}^L} \to \fbox{\varphi_{W_1}^L} \to \fbox{\varphi_{W_2}^L} \to \cdots \to \fbox{\varphi_{W_k}^L} \to x_k$$
$$k+1$$

Figure: The implicit network with (k + 1)L layers. Here $\varphi_{W_k}^L$ refers to a block of *L* identical fully connected layers with weights $W_k = I - \lambda B_k^T B_k$ and $b_k = \lambda B_k^T y^{\delta}$.

Academic Example

Section 4

Academic Example

28 / 47

Setup

Consider the integration operator A : $L^2\left([0,1]\right) \rightarrow L^2\left([0,1]\right)$

$$(Ax)(t) = \int_0^t x(s) ds.$$
 (25)

and

Ground-truth and data

Figure: $x^{\dagger} = u_5$ and y^{δ} with n = 200 and 10% of noise.

Results $(R(\cdot) = \frac{1}{2} \| \cdot \|^2)$

31 / 47

Ground-truth and data

Figure: x^{\dagger} : sparse and y^{δ} with n = 200 and 10% of noise.

Results $(R(\cdot) = \|\cdot\|_1)$

Network convergence

Figure: Difference between x_k and $x(B_k)$ after each training iteration k.

Results (adaptive α)

Magnetic Particle Imaging (MPI)

Section 5

Magnetic Particle Imaging (MPI)

36 / 47

What is MPI?

Imaging modality based on injecting ferromagnetic nanoparticles which are consequently transported by the blood flow.

Goal: Measure the 3-D location and concentration of the nanoparticles.

Advantages:

- High spacial resolution (< 1mm)</p>
- Measurement time (< 0.1 s)
- No harmful radiation

Figure: Magnetic particles developed in Lübeck

What is MPI?

Imaging modality based on injecting ferromagnetic nanoparticles which are consequently transported by the blood flow.

Goal: Measure the 3-D location and concentration of the nanoparticles.

Advantages:

- High spacial resolution (< 1mm)
- Measurement time (< 0.1 s)
- No harmful radiation

Figure: Magnetic particles developed in Lübeck

What is MPI?

Imaging modality based on injecting ferromagnetic nanoparticles which are consequently transported by the blood flow.

Goal: Measure the 3-D location and concentration of the nanoparticles.

Advantages:

- High spacial resolution (< 1mm)
- Measurement time (< 0.1 s)
- No harmful radiation

Figure: Magnetic particles developed in Lübeck

How it works?

- A magnetic field is applied, which is a superposition of:
 - static gradient field, which generates a field-free-point (FFP)
 - highly dynamic spatially homogeneous field, which moves the FFP in space.
- Mean magnetic moment of the nanoparticles in the neighborhood of the FFP generates an electro-magnetic field.
- Voltages are measured by so-called receive coils.
- The time-dependent measurements $v_{\ell}(t)$ in the receive coils constitute the data for reconstructing c(x).

Inverse Problem

Linear Fredholm integral equation of the first kind describes the forward operator.

- Precisely modeling MPI is still an unsolved problem³.
- The integral kernel is commonly determined in a time-consuming calibration procedure.

After discretization we end up with a linear system:

$$Sc = v$$
 (26)

Goal: Reconstruct *c* from measured noisy data $v^{\delta} = Sc + \tau$.

 3 Tobias Kluth, Bangti Jin, and Guanglian Li. "On the degree of ill-posedness of multi-dimensional magnetic particle imaging". In: Inverse Problems 34.9 (2018).

Inverse Problem

Linear Fredholm integral equation of the first kind describes the forward operator.

- Precisely modeling MPI is still an unsolved problem³.
- The integral kernel is commonly determined in a time-consuming calibration procedure.

After discretization we end up with a linear system:

$$Sc = v$$
 (26)

Goal: Reconstruct *c* from measured noisy data $v^{\delta} = Sc + \tau$.

 $^{^3}$ Tobias Kluth, Bangti Jin, and Guanglian Li. "On the degree of ill-posedness of multi-dimensional magnetic particle imaging". In: Inverse Problems 34.9 (2018).

Inverse Problem

Linear Fredholm integral equation of the first kind describes the forward operator.

- Precisely modeling MPI is still an unsolved problem³.
- The integral kernel is commonly determined in a time-consuming calibration procedure.

After discretization we end up with a linear system:

$$Sc = v$$
 (26)

Goal: Reconstruct *c* from measured noisy data $v^{\delta} = Sc + \tau$.

 $^{^3}$ Tobias Kluth, Bangti Jin, and Guanglian Li. "On the degree of ill-posedness of multi-dimensional magnetic particle imaging". In: Inverse Problems 34.9 (2018).
Experimental setup

Figure: Used experimental platform with the FFP trajectory in blue.⁴

⁴Photo taken at University Medical Center Hamburg-Eppendorf by T. Kluth.

Results

(a) Phantom (4mm)

DFG Universität Bremen

Results

(a) Phantom (4mm)

Results

(a) Phantom (4mm)

Results

(a) Phantom (2mm)

Results

(a) Phantom (2mm)

Results

(a) Phantom (2mm)

Thanks!

